001 /* 002 * Copyright 2011 Christian Kumpe http://kumpe.de/christian/java 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 package de.kumpe.hadooptimizer.hadoop; 017 018 import java.util.Collection; 019 import java.util.Collections; 020 021 import org.apache.hadoop.fs.Path; 022 import org.apache.hadoop.mapreduce.Job; 023 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 024 025 import de.kumpe.hadooptimizer.EaOptimizerConfiguration; 026 import de.kumpe.hadooptimizer.Evaluator; 027 import de.kumpe.hadooptimizer.Mutator; 028 import de.kumpe.hadooptimizer.Optimizer; 029 030 /** 031 * An {@link Optimizer} implementation for general evolutionary algorithms which 032 * distributes the {@link Mutator mutation} and {@link Evaluator evaluation} in 033 * a Hadoop cluster. 034 * 035 * @param <I> 036 * the individuals' type 037 * 038 * @see Optimizer 039 * @see HadoOptimizerBase 040 * 041 * @author <a href="http://kumpe.de/christian/java">Christian Kumpe</a> 042 */ 043 public final class EaHadoOptimizer<I> extends HadoOptimizerBase<I> { 044 private static final long serialVersionUID = 1L; 045 046 public EaHadoOptimizer(final EaOptimizerConfiguration<I> configuration) { 047 super(configuration); 048 } 049 050 @Override 051 protected EaOptimizerConfiguration<I> getConfiguration() { 052 return (EaOptimizerConfiguration<I>) super.getConfiguration(); 053 } 054 055 @Override 056 protected void doOptimize() throws Exception { 057 for (long cycle = 1; !getConfiguration().getHalter().halt( 058 evaluationResults); cycle++) { 059 final Path parentsPath = new Path(baseDir, "parents" + cycle); 060 final Path evaluationsPath = new Path(baseDir, "evaluations" 061 + cycle); 062 063 final Collection<I> children = getConfiguration().getRecombiner() 064 .recombine( 065 Collections 066 .unmodifiableCollection(evaluationResults)); 067 068 if (!getConfiguration().isPreserveParents()) { 069 evaluationResults.clear(); 070 } 071 072 writePopulation(children, parentsPath); 073 074 // mutation and evaluation 075 final Job job = createJob(cycle); 076 077 // mapper 078 job.setMapperClass(MutateAndEvaluateChildMapper.class); 079 080 // input 081 // basic settings 082 job.setInputFormatClass(IndividualInputFormat.class); 083 IndividualInputFormat.setInputPaths(job, parentsPath); 084 IndividualInputFormat.setRandomGeneratorFactory(job, 085 getConfiguration().getRandomGeneratorFactory(), 086 getRandomGenerator().nextLong()); 087 final int maxMapTasks = getMaxMapTasks(); 088 IndividualInputFormat.setSplits(job, maxMapTasks); 089 IndividualInputFormat.setOffspring(job, children.size()); 090 IndividualInputFormat.setRandomChoice(job, false); 091 092 // output 093 FileOutputFormat.setOutputPath(job, evaluationsPath); 094 095 executeJob(job); 096 097 new EvaluationResultReader<I>(evaluationResults, getConfiguration() 098 .getParents()).readIndivuals(conf, evaluationsPath); 099 } 100 } 101 }